AS

Physics

PHYA1 - Particles, Quantum Phenomena and Electricity Mark scheme

2450
June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]| Question | Answers | Additional Comments/Guidance | Mark | ID details |
| :---: | :---: | :---: | :---: | :---: |
| 1(a) | (isotopes have) same number of protons \checkmark
 different numbers of neutrons \checkmark | allow atomic mass/proton number
 allow mass number /nucleon number
 TO where mix up atomic number and mass number | 2 | |
| 1(b) | $92 \times 1.60 \times 10^{-19} \checkmark$ correct power
 $(+) 1.47 \times 10^{-17}(\mathrm{C}) \checkmark$ penalise minus sign on answer line | Allow 2 sf answer $1.5 \times 10^{-17}(\mathrm{C})$
 Pay attention to powers on answer line | 2 | |
| 1(c) | $\left(4.8 \times 10^{-19} \div 1.60 \times 10^{-19}=\right) 3 \checkmark$
 $(92-3=) 89 \checkmark \quad 95$ on answer line 1 mark | or $\begin{aligned} & 1.47 \times 10^{-17}-4.8 \times 10^{-19}(=Q)(\mathrm{ecf}) \\ & \left(n=\frac{Q}{e}=\frac{1.47 \times 10-17-4.8 \times 10-19}{1.6 \times 10^{-19}}\right)=89(\mathrm{ecf}) \end{aligned}$
 Integer value for n | 2 | |
| 1(d) | ${ }_{92}^{237} \mathrm{U} \rightarrow{ }_{93}^{237} \mathrm{~Np}+{ }_{-1}^{0} \beta+\overline{v_{(\mathrm{e})}} \checkmark \checkmark \checkmark$ | one mark for:
 - both numbers correct on $N p$
 - both numbers correct on β^{-}
 - correct symbol for (electron) antineutrino | 3 | |
| Total | | | 9 | |

2(c)	cannot be a lepton (to conserve lepton number)/ cannot be a baryon (to conserve baryon number) / must be a meson cannot have a charge (to conserve charge) \checkmark	maximum of one mark for either of first marking point	
(must be) $\pi^{0} \checkmark$	can be done by BLQ table for first two marks TO on conservation wrong statements (-1 for each incorrect applied to the first two marking points) allow K^{0} as must be a meson allowing strangeness to be conserved		
Total			

Question	Answers	Additional Comments/Guidance	Mark	$\begin{gathered} \text { ID } \\ \text { details } \end{gathered}$
3(a)	pair production \checkmark		1	
3(b) (i)	energy of photon needs to provide at least the rest masses \checkmark of the electron and positron / of (both) particles / of particle and antiparticle \checkmark (allow particles or products) TO on nay suggestion of particles have KE	Or - at least the rest energy Of the electron and positron / of (both) particles of particle and antiparticle \checkmark Can't score $2^{\text {nd }}$ mark without having scored 1st	2	
3(b) (ii)	minimum energy $=2 \times 0.510999=1.021998(\mathrm{MeV})^{\checkmark}$ allow detailed argument in reverse 0.5 Mev close to 0.511 MeV	must see working and final answer must be at least 3 sf Or $E=m c^{2}$ leading to 1.024875 MeV Or $2 \times 5.5 \times 10^{-4} \times 931.5=1.02 \mathrm{MeV}$	1	
3(b) (iii)	(electron/positron have) kinetic energy \checkmark	thermal energy n/e Momentum n/e	1	
3(b) (iv)	(attempts to convert energy to joules) $\begin{aligned} & \text { energy }=1.0 \times 10^{6} \times 1.60 \times 10^{-19}=1.6 \times 10^{-13}(\mathrm{~J}) \\ & \text { (use of } E=h f \text {) } \\ & \text { Their energy } \div 6.63 \times 10^{-34}=f \checkmark \end{aligned}$	Condone power 10 error on MeV conversion to J Must see subject or their f on answer line consistent with working	4	

	$f=2.4 \times 10^{20} \checkmark$ cao $\mathrm{Hz}\left(\right.$ condone s $\left.{ }^{-1}\right) \checkmark$	Capital H and lower case z (for symbol) Allow word written as Hertz (h lower case)	
Total			

Question	Answers	Additional Comments/Guidance	Mark	ID details
4(a) (i)	electrons passing through tube collide with electrons in mercury atom \checkmark transferring energy / atom gains energy from a collision \checkmark causing orbital electrons/electrons in mercury atom to move to higher energy level \checkmark	Allow mercury atoms collide with each other Atomic electrons move from ground state	3	
4(a) (ii)	(each) excited electron / atom relaxes to a lower (energy) level emitting a photon of energy equal to the energy difference between the levels \checkmark	allow excited electron / atom de-excites / relaxes Allow excited electron / atom relaxes to ground state Condone moves for relaxes	2	
4(b)	coating absorb (uv) photons (causing excitation) / (uv)photons collide with electrons in the coating (causing excitation) / electrons in coating are excited Atomic electrons de-excite indirectly to previous lower level (and in doing so emit lower energy photons)	allow atoms in coating absorb (uv) photons (causing excitation) Owtte (must convey smaller difference between energy levels in a transition) cascade	2	

Total			7

Question	Answers	Additional Comments/Guidance	Mark	$\begin{gathered} \text { ID } \\ \text { details } \end{gathered}$
5(a) (i)	correct diode bias for variable supply, must have some attempt to vary $\mathrm{pd} \checkmark$ correct symbols and positions for voltmeter, ammeter: voltmeter in parallel with diode only ammeter in series with diode \checkmark allow voltmeter across ammeter and diode	Condone variable resistor (condone missing arrow) don't allow thermistor symbol Allow mA symbol instead of A symbol for ammeter Allow symbols for diode without line through triangle and / or with a circle Diode symbol must consist of a triangle and a straight line at nose perpendicular to wiring in circuit.	2	

5(a) (ii)	The candidate's writing should be legible and the spelling, punctuation and grammar should be sufficiently accurate for the meaning to be clear. The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria. High Level (Good to excellent): 5 or 6 marks The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question. Candidate explains how to obtain sufficient values of I and V. They mention the need to limit the current through the diode and give an indication of the range and frequency of measurements. They discuss an advantage of using a data logger. voltage does not exceed 1.0V, diode is forward biased Intermediate Level (Modest to adequate): $\mathbf{3}$ or $\mathbf{4}$ marks The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate. Candidate explains how to obtain sufficient values of I and V. includes mention of diode is forward biased or suitable voltage for switch on mentioned or advantage of data logger	Lower band vary pd obtain several readings of I and V or an advantage of using data logger or low level safety and action to minimise risk Middle band vary pd and obtain several readings of I and V, at least 6 different values including an advantage of using data logger or mention of forward bias or mention of switch on voltage (0.6 V) or safety Top Band Mention of how to vary pd (seen in viable circuit) obtain several readings of I and V, at least 6 different values (range given where maximum value of pd does not exceed 1.0 V) mention of limiting current through diode using protective resistor consider advantage of data logger mention forward bias must include potentiometer for 6 marks must have voltage as independent, no current led arguments in Top band	6	

Question	Answers	Additional Comments/Guidance	Mark	$\begin{gathered} \text { ID } \\ \text { details } \end{gathered}$
6(a) (i)	$230 \times \sqrt{2}=325(\mathrm{~V})^{\checkmark}$ $(2 \times 325=) 650 \text { to } 651 \mathrm{~V} \checkmark$	allow doubling their incorrect peak voltage (162.6×2) by use of $\sqrt{2}$ as an attempt to find peak-to-peak for 1 mark but not just 2×230	2	
$\begin{aligned} & \hline 6(\mathrm{a}) \text { (ii) } \\ & \text { Must see } \\ & 6(\mathrm{a}) \text { (i) } \end{aligned}$	$\begin{aligned} & \text { (use of } \left.P=V^{2} / R\right) \\ & P=230^{2} / 12 \checkmark \end{aligned}$ $P=4.4 \times 10^{3}(\mathrm{~W})^{\checkmark} \text { cao }$ 2 sig. figs. Incorrect answer must be supported by working \checkmark	Allow their incorrect answer (a)(i) ${ }^{2} \div 12$ Or $325^{2} \div 12$ as a use of for 1 mark Alternative For first mark $I=\frac{V}{R}$ and $P=V I$ allowing their incorrect answer (a)(i) or 325 as sub for V for 1 mark Answers 8.8 kW (325V) and 35 kW (650 V)	3	

Question	Answers	Additional Comments/Guidance	Mark	ID details
7(a)	time base is (switched) off \checkmark TO for y-input switched off	not affected by x plates because these plates are not switched on	1	
7(b) (i)	emf (of battery) ${ }^{\checkmark}$	not just terminal pd TO applied for non-emf statements Allow explanation of emf	1	
7(b) (ii)	(emf $=3 \times 2.0=$) $6.0 \mathrm{~V} \checkmark$	penalise 1 sf	1	
7(c)	Because the pd across the y plates has decreased \checkmark there is a current (in the battery) \checkmark there is a pd/voltage across the internal resistance or there are (now) lost volts \checkmark terminal pd decreases or terminal pd now less than emf or $I R=\varepsilon-I r$	MAX 3	3	
7(d)	$\begin{aligned} & V=2.5 \times 2.0=5 \mathrm{~V} \\ & \text { or (use of } \mathrm{V}=\mathrm{R} \text {) by } I=\text { their incorrect voltage } \div 18 \\ & I=0.28 \text { (A) } \checkmark \text { cao } \end{aligned}$	Must see I as subject or their working leading to answer line for use of	2	

7(e)	$\begin{aligned} & (\text { use of } \varepsilon=I R+I r) \\ & 6.0=2.5 \times 2.0+0.28 \times r \end{aligned}$ or correct rearrangement to make r subject or sets $\boldsymbol{R}_{(T)}=\frac{\varepsilon}{0.28}=21.2$ to 21.4 (ohms) with subject seen or $r=\frac{1}{0.28} \checkmark$ $r=3.4 \text { to3.6 } \Omega \checkmark$	$r=\frac{\varepsilon-I R}{I}$ Ecf for I and $V \quad$ ecfans $=\frac{6-\text { their } V}{\text { their } I}$	2

[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

